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A CHARACTERIZATION OF THE GAMMA
DISTRIBUTION FROM A RANDOM DIFFERENCE EQUATION

by
Eric S. Tollar

ABSTRACT

A characterization of the gamma distribution is considered which arises
from a random difference equation. A proof without characteristic functions is
given that if V and Y are independent random variables, then the independence
of V.Y and (1~V) Y results in a characterization of the gamma distribution

(after excluding the trivial cases).
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1. Introduction

The general random difference equation is defined recursively by
(1.1) Y =MY .4+Q,n2l,

where Mn are random d xd matrices, and Qn and Yn are random d-vectors. This
equation has proven useful as a model for physical phenomena (see Bernard,
Shenton and Uppuluri (1967), and Cavalli-Sforza and Feldman (1973)), and as a
useful mathematical tool (see, for example, Solomon (1975)).

Kesten (1973) has established some general conditions under which Yn con-
verges in distribution for d21 as n approaches infinity. Paulson and Uppuluri
(1972), and Verwaat (1979) have some partial results on the characterization of
the limiting distribution of (1.1) for d=1.

A very specific version of (1.1) when d =2 will be examined. Under reason-

able conditiors it is shown that asymptotic independence of Y n and Y results

1, 2,n
in a characterization of the gamma distribution. More specifically, it is shown
that often asymptotic independence of Yl,n and Yz,n implies that there are inde-
pendent random variables V and Y where V.Y and (1-V) + Y are also independent.
In the non-trivial cases this implies that Y has a gamma distribution, and V has
a beta distribution.

As can be easily shown, this is yet another generalization of the celebrated
characterization of the gamma distribution of Lukacs (1955), (for an example of
other generalizations, see Marsaglia (1974)). A simple proof of this (i.e.,

one without characteristic functions) is given in section 2 of this paper.

Section 3 is devoted to the difference equation from which the characterization

arose.




2. A Characterization of the Gamma Distribution

In the following, it is said X~T(1, 8) if

(2.1) P(X<x) = I(x>0)r(g)'lfgl(;‘y)ﬁ-le'x)'dy,
and X~B(a, B) if

(2.2) P(X<x)=1(0<x<1)B(a, 3)-113 1-1(1 - y)B-1dy.

Also, for any random variable X and arbitrary set A, we define the random var-

iable XA by the restviction of X to the set A. That is,
(2.3) P(XASx)=P(XeA)‘1P(XSx, XeA).
The following lemma proves to be useful in this sectionm.

LEMMA 3.1. Let U, W be independent random variables, where U>W>(0. Then

U(U-W)-1 and U-W are independent if and only if U=c, W=d, c>d>0.
PROOF. It is clear there must be a constant e where
(2.4) P(Uze) =P(W<se)=1.

Let

b1=inf {x: P(Wsx) =1},
2.5)
b2=sup {x: P(U2x)=1}.

Then, since U~-W2b -bl, Wb

2 1’

(2.6) UU-m-l=1+wE-mw-1 sbz(bz-bl)-l.

From the definition of b1 and bz, it is equally clear that for all €>0,

P(U-V<b,~b, +€)>0. Because U-W and U(U- W)-! are independent,

: * . - y .,"_.I...;\.-.‘, IS .';\, o '.":'":.‘.‘\,' ‘-h' ‘-(‘...'-'_
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2.7) PU-W)-1 >b, (b, ~ b, + e)°h
4
8 =PUU-W-2>by(b,-b +e)HU-Web,-b +e).
E:j Since
<
(2.8) {w: U- W<b2-b1+ e} c{u: (U<b2+ e)n (W)bl -€)},

2 U-W<b,-b; +¢ therefore implies that U(U-W)"1>1+ (b -€)(b,-b +e) 1=

bz(bz-b1+e)°1. Therefore, for all €>0,

- -1 - -1 - - =
(2.9) P(U(U-W)"1>b, (b, - b, +€) ju W<b,-by +e)=1.
Coupled with (2.7), (2.9) implies that
. - -1 - -1y =
(2.10) PUEU-W™t2b,0,-b)71) =1,

Combined with (2.6), it is established that P(U(U - W)"! =b2(b2 -bl)’l) =1, which

. in turn establishes the lemma, where c-'=b2 and d=b1. 0

As a first step in showing that for independent random variables V and Y,
V+Y being independent of (1-V) «Y leads to a characterization of the Gamma

distribution, the following theorem is established.

THEOREM 2.2. If Y20, and if V and Y are independent, then VY and (1-V)Y are

independent if and only if one of the five conditions below are true:

1) Y=0,
2) V=0,
3) v=1,

4) Y=se¢, V=d,

5) Y~T(X, a+8), V~B(a, B).
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PROOF, Since sufficiency is obvious, only the necessity of the conditions need

be established. For convenience, let
(2.11) X=VY and Z= (1~ V)Y.

Further, let

A ={Y=0}={x=0, Z=0}
Ay={Y>0, V<0}={X<0, Z2>0}
Az ={Y>0, V=0}={X=0, Z>0}
A4={Y>0, 0<V<1}={X>0, Z>0}
A5={Y>0, V=1}={X>0, Z=0}
A6={Y>0,V>1}={X>O,Z<0L

(2.12) 3

From (2.3), it is easily seen that since V and Y are independent, so arc VA
i

and Ya for all i. Similarly X and Z being independent implies XA and ZA are
i i i

also.
The proof requires little other than the observation that since Y and V are
independent, and X and Z are also assumed to be independent, then since

Y{Y>0}~Y{y>o, VeB}’ we have for i=z1, j=1
(2.13) Y. ~Y. .

It can be similarly seen that for i24, j24

(2'14) X ~X ’
Ai Aj

and for 2€is4, 25sj<4,

{2.15) Z, ~72, .
Ai Aj

It can then be shown that only the 5 conditions of the theorem do not violate

one of (2.13), (2.14), or (2.15).




...............

Since P(Y=0) =1 is condition 1 of the theorem, it is assumed that P(Y=0) <1
throughout. Two cases will be considered; when P(0<V <1) =0 and when

P(0<V<1)>0.

Case I: P(0<V<1)=0.
P(0<V<1) =0 implies P(X>0, 2>0) =0. Therefore, either P(X>0) =0, or
P(Z>0)=0. Assume that P(Z>0)=0. As such, P(AZUAsuAA) =0,

1f P(A6)>0, then XA >0, -ZA >0, and X, +Z2, =Y, >0. Since X, , -Z

6 6 As D Ag Ae” he
are independent, and X, +Z, =Y, and X, (X, +2Z, )"} =V, are also independent,
A6 A6 A6 A6 A6 A6 A6
the application of lemma 2.1 vhere U=X, , U=-Z  yields X, =¢, 2, =-d, and

A Ae A Ag

Y, =c-d, for c>d>0., If in addition P(A.>0), then X, =Y, .
A6 5 AS AS

However, from

(2.13) and (2.14) it must be true that xA ~X, and Y, ~Y, if both P(A_)>0
5 A As g >

and P(A6) >0. Thus at most one of AS and A6 can have probability greater thin 0.

Assume that P(AS) >0 (and therecfore P(A2 vA UAA UAG) =0). Then from the

3
independence of Y and V it can be seen that

(2.16) P(Y=0, V21)=P(Y=0)P(V21)=P(Y=0)P(Y=0, V=1).

As such, P(Y=0) =1, which is condition 1, or P(Y=0, V=21) =0, which yields
P{(V=1)=1 (condition 3).

If P(A6) >0 is assumed instead, a similar condition based on the independ-
ence of X and Z will yield that P(A6) =0 or P(Ae) =1 which are conditions 1 and
4, respectively.

Finally, if it is instead assumed that P(X>0) =0, then by similar arguments

it can be shown that one of condition 1, condition 2 or condition 4 must apply.

A B A At o o R e ey
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Case II: P(0<V<1)>0.
Since it is assumed that P(Y=0) <1, it follows that P(A4) =
P(Y>0, 0<V<1)>0. Clearly X

>0, ZA >0, XA and ZA are independent. Also,

Ay 4 4 4

VA and YA are independent and as can be seen from (2.11),
4 4

Y, =X, +2, ,
A4 A4 A4

vV, =X, (X, +2Z, )-1.
Ay TALCTA, A,

Therefore Lukacs' characterization of the gamma distribution yields,

X ~I'()\, G), Z ~r(>‘n B)J
Ay Ay
which implies

"'F(A, G“'B)) VA “’B(G, B)'

Y
Ay 4

A

1f P(Az) >0, then letting U=Z, , w=-xA , appealing to lemma 2.1 again
2 2

yields that Z, =c¢, X, =-d. However, from (2.15), Z, ~2Z, , which implies that
A2 Az A2 A4
P(AZ) =0. Assuming that P(A6) >0 yields a similar contradiction for the distri-
bution of X.

If P(A,) >0, then Y, =2, , since X, =0. But (2.13) and (2.15) imply that
3 A3 A3 AS

YA ~T(A, a+8) and ZA ~T(A, B8). As such, P(As) =0, A similar argument yields
3 3

that P(AS) =0,
These observations collectively imply P(0<V<1) =1, Finally, the observa-

tion that the independence of X and Z implies

(2.17) P(Al) =P(X=0, 2=0)=P(X=0)P(2=0) = P(Al)2
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yields that P(Al) =1 which is condition 1, or P(Al) =0 which yields P(A4) =1,

and in turn implies condition §. 0
In the next theorem, the condition that Y20 in theorem 2.2 is removed.

THEOREM 2.3. If V and Y are independent random variables, them VY and (1-V)Y

are _independent if and only if one of the conditions below are true:

1) Y=o,
2) v=0,
3) v=1l,
4) Y=¢, V=z=d,

5) Y~T(X, a+B), V~B(a, 8),

6) -Y~T(x, a+B), V~B(a, B).

PROOF. Again the sufficiency is obvious, so only the necessity of the conditions
need be established. Clearly if either P(Y20) =1 or P(Y<0) =1, then by theorem
2.2, the proof is complete. It will therefore be assumed throughout that
P(Y>0) >0 and P(Y<0) >0, which will be shown to generate a contradiction.

As in theorem 2.2, again sets are defined and recstricted random variables

are examined. The sets are:

(A ={Y=0}={X=0, 2=0}

A2={Y>0, V<0}={X<0, Z>0, X+Z>0}
A3={Y>0, V=0}={X=0, Z>0}
A4={Y>0, 0<V<1}={X>0, Z=0}
A5={Y>0, Vv=1}={X>0, Z=0}

(2.18) W A6={Y>0,V>1}={X>0,Z<0,X+Z>0}
A,={Y<0, V<0}={X>0, Z<0, X+2<0}
A8={Y<0, V=0}={X=0, Z<0}
A9={Y<0, 0<V<1}={X<0, Z2<0}
Alp={Y<0, V=1}={X<0, Z=0}
2{Y<0, V>1}={X<0, Z>0, X+2<0},

L A
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Note that while all Ai are of the form Ai ={Ye¢A, VeB}, the sets A_, A

2’ 76’

A, and A, cannot be expressed as A, ={XeA, ZeB}, for AcR, BcR.

If it is temporarily assumed that P(0<V<1) >0, then P(X>0, Z>0)>0,
P(X<0, Z<0)>0. Since X and Z are independent, this condition also implies
that P(X>0, Z<0)>0 and P(X<0, 2>0)>0. Thus P(AzuA11)>3, P(A4) >0,
P(A6 uA./) >0, P(Ag) >0.

By appealing to Lukacs' characterization as in theorem 2.2, it follows that

xA4~r(A1, al), zA4~r(x1, el), YA4~I'(A1, a1+81)
(2.19)
-xA9~r(x2, az), -zA9~r(Az, 32), -YA9~ I‘(lz, a2+82).

By arguments similar to those of (2.13), (2.14) and (2.15), it follows that

X y =2 ~T(A;5 a ) xT(A,, B,)
A6UA7 A6UA7 1 1 2 2
(2.20)

~-X 2

H]
A, UA AZUA

T(A,, a,) xT(A,, B,).
2 YA 2’ 2 1" "1

11

Since P(A6 UA7) >0, it will be temporarily assumed that P(A6) >0. Clearly, it
follows from (2.13) that

(2.21) YA6~YA4~P(A1, u1+81).

It can be trivially verified fron (2.20) for x0>0, 20<0 that
a, o,-1 -A.x B B,-1 Az
kl 1x 1 e 1 12 2(-:) 2 e 2 dxdz
(2.22) P(X, $Xg, 2, 5z0)=jf
6 6 A F(ul)r(Bz)P(A6)

where A= {(x, z): xsxo, zSzO, x+z>0}. Because YA6=XA6+ZA6, from a
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transformation of variables in (2.22), for (2.21) to be also true it must follow

that

81u+61 (a+B)A2 a

-1 -(A, +2.)w B,-1
1 1 2 2
(2.23) A,y I‘(al)I‘(Bl)P(A())

IO Yy +w) e w dw.

1

Examination of the behavior of the two sides of this equation (particularly as y

approaches 0) yields that equality is impossible for a

1>0, 31>0. As such,

P(A6) =0. It is clear an identical argument will yield that P(A7) =0. As such,

it must be true that the assumption of P(0<V<1)>0 leads to a contradiction,

so P(0<V<1)=0, and therefore P(X>0, Z>0)=P(X<0, Z<0)=0.

If P{V<0) >0, then since both P(Y<0)>0 and P(Y>0) >0, we have that

P(V+Y>0)>0 and P((1-V)Y>0)>0. This contradicts P(X>0, Z>0)=0, since X

and Z are assumed to be independent. As such, P(V<0)=0. Similarly P(V>1)>0

contradicts P(X<0, Z<0) =0, and therefore P(V>1)=0. If both P(V=1)>0 and

P(Vv=0) >0, then again P(X>0) >0 and P(Z>0) >0, respectively, which is again a

contradiction. Therefore we finally have that if P(Y>0) >0 and P(Y<0) >0, then

P(V=0)=1 (condition 2}, or P(V=1) =1 (condition 3). 0

In the next section, the random difference equation which motivated this

characterization of the gamma distribution is given.

3. Concluding Comments

Paulson and Uppuluri (1972) and Verwaat (1979), have characterized some of

the limiting distributions for a random differcnce equation with one dimension.

For a very specific two-dimensional model, the above characterization of the

gamra arises when the asymptotic independence of the two compartments is consid-

ered.
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The equation to be considered is difined for n>0 by the recursive equation

Y vV 1-V Y U
(3.1)

L}
+

where {V n’ Wn, Un} is an i.i.d. sequence, independent of each other and XO

Kesten (1973) has given some conditions under which the convergences in distribu-

tion of Y is assured. Should Y converge in distribution to Y= (¥; ’YZ): then for

{ ¢(s, t) =E(exp(is Y, +it Y,))
¥(s)  =E(exp(is U,)

(3.2)

it is easily verified that
(3.3) ¢(s, t) =¢(s)E¢(sV1+t(1-V1), twl).

From the assumed independence of Y, and Y, it follows that

1 2

(3.4) $(s, t) =w(s)E¢(sV1+t(1-V1), 0)Eé (0, twl)
and that
(3.5) ¢(s, ) =v(s)E¢(sVy, 0IE4(t(1-V,), OIEG(O, tW)).

Define the set AcP by
(3.6) A={s: (v(s) =0) v (E¢(0, swl) =0)}.

If A® is dense in R then by equating (3.4) and (3.5) it is clear that for all

s, t e R?

(3.7) E¢(5V1+t(1-V1), 0) SE(;)(LVI, a):¢(t(1-v1), 0).
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From (3.7) it is cle : that should AS be dense, then Y, and Yz are independent

1
if and only if VIYI and (1--V1)Y1 are independent. This is the concern of sec-
tion 2,

The most reasonable and realistic condition on {Un, Vn, Wn} in order for AS

to be dense is given in the following corollary.

COROLLARY 3.1. IfU 20, 0sV_<1, and W 20 for all n, then Y and Y are
- n n -/ n 1,n 2,n

asymptotically independent if and only if Un has a Gamma distribution and Vn has

a beta distribution, or one of the four trivial conditions of theorem 2.2 are

true.

The proof follows immediately from theorem 2.2, the conditions for conver-
gence of (3.1) given in Kesten (1973), and the fact that the characteristic
functions of non-negative random variables have dense support (see Smith (1962)).

Clearly, other restrictions of Un’ Vn’ wn will yield that AS is dense, how-

ever, the more interesting problem of characterizing the asymptotic independence

of Yl,n and Y2,n appears to be an open question.

T
Rl
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